A sliding mode-based starling-like controller for implantable rotary blood pumps.

نویسندگان

  • Mohsen A Bakouri
  • Robert F Salamonsen
  • Andrey V Savkin
  • Abdul-Hakeem H AlOmari
  • Einly Lim
  • Nigel H Lovell
چکیده

Clinically adequate implementation of physiological control of a rotary left ventricular assist device requires a sophisticated technique such as the recently proposed method based on the Frank-Starling mechanism. In this mechanism, the stroke volume of the heart increases in response to an increase in the volume of blood filling the left ventricle at the end of diastole. To emulate this process, changes in pump speed need to automatically regulate pump flow to ensure that the combined output of the left ventricle and pump match the output of the right ventricle across changing cardiovascular states. In this approach, we exploit the linear relationship between estimated mean pump flow (Q ̅ est) and pump flow pulsatility (PIQp) in a tracking control algorithm based on sliding mode control. The immediate response of the controller was assessed using a lumped parameter model of the cardiovascular system (CVS) and pump from which could be extracted both Q ̅ est and PIQp. Two different perturbations from the resting state in the presence of left ventricular failure were tested. The first was blood loss requiring a reduction in pump flow to match the reduced output from the right ventricle and to avoid the complication of ventricular suction. The second was exercise, requiring an increase in pump flow. The sliding mode controller induced the required changes in Qp within approximately five heart beats in the blood loss simulation and eight heart beats in the exercise simulation without clinically significant transients or steady-state errors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preload-Based Starling-Like Control for Rotary Blood Pumps: Numerical Comparison with Pulsatility Control and Constant Speed Operation

In this study, we evaluate a preload-based Starling-like controller for implantable rotary blood pumps (IRBPs) using left ventricular end-diastolic pressure (PLVED) as the feedback variable. Simulations are conducted using a validated mathematical model. The controller emulates the response of the natural left ventricle (LV) to changes in PLVED. We report the performance of the preload-based St...

متن کامل

Using Sliding Mode Controller and Eligibility Traces for Controlling the Blood Glucose in Diabetic Patients at the Presence of Fault

Some people suffering from diabetes use insulin injection pumps to control the blood glucose level. Sometimes, the fault may occur in the sensor or actuator of these pumps. The main objective of this paper is controlling the blood glucose level at the desired level and fault-tolerant control of these injection pumps. To this end, the eligibility traces algorithm is combined with the sliding mod...

متن کامل

A Sensorless Robust Tracking Control of an Implantable Rotary Blood Pump for Heart Failure Patients

Physiological control of a left ventricle assist device (LVAD) is generally a complicated task due to diverse operating environments and patient variability. In this work, a tracking control algorithm based on sliding mode and feed forward control for a class of discrete-time single input single output (SISO) nonlinear uncertain systems is presented. The controller was developed to track the re...

متن کامل

Adaptive fuzzy sliding mode and indirect radial-basis-function neural network controller for trajectory tracking control of a car-like robot

The ever-growing use of various vehicles for transportation, on the one hand, and the statistics ofsoaring road accidents resulting from human error, on the other hand, reminds us of the necessity toconduct more extensive research on the design, manufacturing and control of driver-less intelligentvehicles. For the automatic control of an autonomous vehicle, we need its dynamic...

متن کامل

AN OPTIMAL FUZZY SLIDING MODE CONTROLLER DESIGN BASED ON PARTICLE SWARM OPTIMIZATION AND USING SCALAR SIGN FUNCTION

This paper addresses the problems caused by an inappropriate selection of sliding surface parameters in fuzzy sliding mode controllers via an optimization approach. In particular, the proposed method employs the parallel distributed compensator scheme to design the state feedback based control law. The controller gains are determined in offline mode via a linear quadratic regular. The particle ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Artificial organs

دوره 38 7  شماره 

صفحات  -

تاریخ انتشار 2014